This report is provided “as is” for informational purposes only. The Department of Homeland Security (DHS) does not provide any warranties of any kind regarding any information contained herein. The DHS does not endorse any commercial product or service referenced in this bulletin or otherwise.
This document is marked TLP:CLEAR–Recipients may share this information without restriction. Sources may use TLP:CLEAR when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLP:CLEAR information may be shared without restriction. For more information on the Traffic Light Protocol (TLP), see http://www.cisa.gov/tlp.
Summary
Description
Responding to the recently disclosed CVE-2023-4966, affecting Citrix NetScaler ADC and NetScaler Gateway appliances, CISA received four files for analysis that show files being used to save registry hives, dump the Local Security Authority Subsystem Service (LSASS) process memory to disk, and attempts to establish sessions via Windows Remote Management (WinRM). The files include:
This file is a Windows batch file called a.bat that is used to execute the file called a.exe with the file called a.dll as an argument. The output is printed to a file named ‘z.txt’ located in the path C:WindowsTasks. Next, a.bat pings the loop back internet protocol (IP) address 127.0.0[.]1 three times.
The next command it runs is reg save to save the HKLMSYSTEM registry hive into the C:Windowstasksem directory. Again, a.bat pings the loop back address 127.0.0[.]1 one time before executing another reg save command and saves the HKLMSAM registry hive into the C:WindowsTaskam directory. Next, a.bat runs three makecab commands to create three Cabinet (.cab) files from the previously mentioned saved registry hives and one file named C:UsersPublica.png. The names of the .cab files are as follows:
–Start names and paths of .cab files created–
c:windowstasksem.cab
c:windowstasksam.cab
c:windowstasksa.cab
–End names and paths of .cab files created–
This file is a 64-bit Windows command-line executable called a.exe that is executed by a.bat. This file issues the Remote Procedure Call (RPC) ncalrpc:[lsasspirpc] to the RPC end point to provide a file path to the LSASS on the infected machine. Once the file path is returned, the malware loads the accompanying DLL file called a.dll into the running LSASS process. If the DLL is correctly loaded, then the malware outputs the message “[*]success” in the console.
This file is a 64-bit Windows DLL called a.dll that is executed by a.bat as a parameter for the file a.exe. The file a.exe loads this file into the running LSASS process on the infected machine. The file a.dll calls the Windows API CreateFileW to create a file called a.png in the path C:UsersPublic.
Next, a.dll loads DbgCore.dll then utilizes MiniDumpWriteDump function to dump LSASS process memory to disk. If successful, the dumped process memory is written to a.png. Once this is complete, the file a.bat specifies that the file a.png is used to create the cabinet file called a.cab in the path C:WindowsTasks.
This file is a Python script called a.py that attempts to leverage WinRM to establish a session. The script attempts to authenticate to the remote machine using NT LAN Manager (NTLM) if the keyword “hashpasswd” is present. If the keyword “hashpasswd” is not present, then the script attempts to authenticate using basic authentication. Once a WinRM session is established with the remote machine, the script has the ability to execute command line arguments on the remote machine. If there is no command specified, then a default command of “whoami” is run.
CISA recommends that users and administrators consider using the following best practices to strengthen the security posture of their organization’s systems. Any configuration changes should be reviewed by system owners and administrators prior to implementation to avoid unwanted impacts.
Maintain up-to-date antivirus signatures and engines.
Keep operating system patches up-to-date.
Disable File and Printer sharing services. If these services are required, use strong passwords or Active Directory authentication.
Restrict users’ ability (permissions) to install and run unwanted software applications. Do not add users to the local administrators group unless required.
Enforce a strong password policy and implement regular password changes.
Exercise caution when opening e-mail attachments even if the attachment is expected and the sender appears to be known.
Enable a personal firewall on agency workstations, configured to deny unsolicited connection requests.
Disable unnecessary services on agency workstations and servers.
Scan for and remove suspicious e-mail attachments; ensure the scanned attachment is its “true file type” (i.e., the extension matches the file header).
Monitor users’ web browsing habits; restrict access to sites with unfavorable content.
Exercise caution when using removable media (e.g., USB thumb drives, external drives, CDs, etc.).
Scan all software downloaded from the Internet prior to executing.
Maintain situational awareness of the latest threats and implement appropriate Access Control Lists (ACLs).
Additional information on malware incident prevention and handling can be found in National Institute of Standards and Technology (NIST) Special Publication 800-83, “Guide to Malware Incident Prevention & Handling for Desktops and Laptops”.
CISA continuously strives to improve its products and services. You can help by answering a very short series of questions about this product at the following URL: https://us-cert.cisa.gov/forms/feedback/
Document FAQ
What is a MIFR? A Malware Initial Findings Report (MIFR) is intended to provide organizations with malware analysis in a timely manner. In most instances this report will provide initial indicators for computer and network defense. To request additional analysis, please contact CISA and provide information regarding the level of desired analysis.
What is a MAR? A Malware Analysis Report (MAR) is intended to provide organizations with more detailed malware analysis acquired via manual reverse engineering. To request additional analysis, please contact CISA and provide information regarding the level of desired analysis.
Can I edit this document? This document is not to be edited in any way by recipients. All comments or questions related to this document should be directed to the CISA at 1-888-282-0870 or CISA Service Desk.
Can I submit malware to CISA? Malware samples can be submitted via three methods:
CISA encourages you to report any suspicious activity, including cybersecurity incidents, possible malicious code, software vulnerabilities, and phishing-related scams. Reporting forms can be found on CISA’s homepage at www.cisa.gov.
XWe use cookies in our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of the cookies explicitly. Visit Cookie Settings to know more about the cookies used on our website. Read More RejectACCEPTCookie settings
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
This category contains the advertising cookie that is set by Google, when embeding one of its services. CYNET embeds a Google Map, showing its location in the Homepage and in Contact sections. The cookies that are set are the following:
NID
This website uses Google Analytics (with IP Anonymization) in order to track the visitor's performance. The cookies that are set by the service are the following:
_ga
_gat
_gid
This category contains all the cookies that are closely related to the functionality of the Website, such as the prefered language, whether the user has read and/or accepted the Cookie Consent in the various categories.
The following cookies are set:
pll_language
viewed_cookie_policy
cookielawinfo-checkbox-preferences
cookielawinfo-checkbox-advertisement